
A Modular Framework for Email Sender Trust Evaluation 
Using DNS, Reputation Intelligence, and Behavioral 
Heuristics 

 

Nikola Skendrovic 
Plummer Associates Inc. ,  Security Operations Team 
 
Work: nskendrovic@plummer.com   
Personal: nik.skendrovic@gmail.com 

Date: September 20, 2025 

 

Abstract 

Email remains a dominant communication channel—and a persistent attack vector. 
Spoofing, phishing, and impersonation tactics continue to exploit weaknesses in sender 
authentication protocols and user trust. While standards such as SPF, DKIM, and DMARC 
are widely adopted, misconfigurations and deceptive tactics still allow malicious actors to 
bypass traditional filters. Commercial email gateways offer scoring and filtering 
mechanisms, but often lack transparency, adaptability, and educational value. 

This paper presents a modular, Python-based framework for evaluating email sender 
trustworthiness through a combination of technical validation and behavioral analysis. The 
system parses raw .eml files to extract sender and routing metadata, sanitizes domain 
strings to prevent malformed lookups, validates SPF and MX records via DNS queries, and 
assesses domain age using local WHOIS lookups with fallback handling. It integrates IP 
reputation scoring via AbuseIPDB and applies heuristic checks to detect suspicious sender 
display names, hash-like identifiers, and high-risk domain patterns (e.g., uncommon TLDs 
or excessive length). 

 



A composite scoring model begins at 100 and applies structured penalties for missing 
authentication records, short domain age, high abuse scores, and behavioral anomalies. 
Final trust scores are classified into Low, Medium, or High risk categories, enabling 
scalable and interpretable sender assessments. The framework is fully scriptable, 
transparent, and extensible—designed for integration into security workflows, educational 
environments, and custom tooling. It offers a practical alternative to proprietary email 
filtering systems, empowering analysts, researchers, and developers to understand and 

refine sender reputation logic with clarity and control.  
 

Keywords: Email Security, SPF, DKIM, DMARC, DNS, WHOIS, AbuseIPDB, Sender 
Reputation, Phishing Detection, Threat Intelligence  



1. Introduction 
 

Email spoofing and impersonation attacks continue to pose significant risks to 
organizations and individuals. Despite widespread adoption of SPF, DKIM, and DMARC, 
many domains remain misconfigured or vulnerable to abuse. Commercial email gateways 
offer filtering and scoring mechanisms, yet often lack transparency, customization, or 
educational value for analysts and learners. 

This research introduces a modular sender analysis framework that combines technical 
validation with behavioral heuristics to improve detection accuracy. The system: 

• Parses .eml files to extract sender metadata and routing headers 

• Sanitizes domain strings to prevent malformed lookups 

• Validates SPF and MX records via DNS queries 

• Assesses domain age using local WHOIS lookups with fallback handling 

• Queries IP reputation databases (e.g., AbuseIPDB) 

• Detects suspicious sender display names and domain patterns 

• Computes a trust score based on both technical and contextual indicators 

• Classifies risk levels as Low, Medium, or High based on score thresholds 

The scoring model begins at 100 and applies deductions for missing SPF, high abuse 
scores, short domain age, absent MX records, and behavioral anomalies such as hash-like 
sender names or suspicious top-level domains. This hybrid approach enables more 
nuanced assessments, reducing false positives and highlighting deceptive senders that 
may otherwise appear legitimate. 

Designed for integration into broader security workflows or educational environments, the 
framework is scriptable, transparent, and extensible—offering a practical tool for threat 
analysts, researchers, and students alike. 

 

  



2. Related Work 
 

Email authentication and sender reputation have been the subject of extensive research 
and industry development over the past two decades. Protocols such as SPF (Sender 
Policy Framework), DKIM (DomainKeys Identified Mail), and DMARC (Domain-based 
Message Authentication, Reporting, and Conformance) were introduced to combat 
spoofing and impersonation by verifying sender identity and message integrity. While these 
protocols are widely adopted, studies have shown that misconfiguration remains common, 
and enforcement is inconsistent across domains and mail servers. Many domains publish 
SPF records but fail to align them with actual sending infrastructure, and DKIM signatures 
are often missing or invalid due to poor key management or relay interference. 

Academic studies have explored phishing detection using lexical analysis of domains, 
machine learning on header and body features, and trust evaluation frameworks. For 
example, Fette et al. (2007) introduced one of the first large-scale phishing detection 
studies using lexical and behavioral cues. Abu-Nimeh et al. (2007) compared multiple 
machine learning techniques for phishing detection, highlighting trade-offs in precision 
and recall. More recent work, such as Marchal et al. (2017), examined URL-based and 
domain age heuristics, emphasizing their value in catching malicious senders. 

Tools like SpamAssassin pioneered heuristic scoring by analyzing message content, header 
anomalies, and sender metadata. However, its rule-based system can be opaque and 
difficult to customize, especially for non-expert users. Commercial platforms such as 
Proofpoint, Mimecast, and Barracuda offer enterprise-grade filtering and threat detection, 
but their scoring logic is proprietary and inaccessible to most users. These systems often 
rely on internal threat intelligence feeds and machine learning models that cannot be 
audited or adapted by the end user. As a result, analysts and educators lack visibility into 
how sender trust is determined, and small organizations are left without affordable, 
transparent alternatives. 

In parallel, the rise of public threat intelligence APIs has enabled more granular reputation 
analysis. Services like AbuseIPDB, VirusTotal, IPQualityScore, and Cisco Talos provide real-
time data on IP addresses, domains, and URLs associated with malicious activity. These 
platforms are invaluable for enrichment and correlation, but they require manual 
integration and often impose rate limits or licensing constraints. Moreover, they typically 
focus on individual indicators rather than holistic sender evaluation. 

 



This framework builds on these foundations by combining multiple validation layers into a 
unified, transparent scoring engine. It leverages DNS queries to validate SPF and MX 
records, parses email headers to extract sender IPs, and integrates with AbuseIPDB to 
assess reputation. It also incorporates WHOIS data to evaluate domain age—a critical but 
often overlooked signal in phishing detection. Unlike monolithic or opaque systems, this 
framework is modular and scriptable, allowing users to inspect, modify, and extend each 
component. The scoring model is intentionally simple and interpretable, enabling analysts 
to understand why a sender is flagged and adjust thresholds based on context or risk 
tolerance. 

By bridging the gap between protocol-level validation, threat intelligence, and practical 
scoring, this framework offers a middle ground between academic rigor and operational 
usability. It empowers users to build their own sender trust logic, experiment with new 
signals, and integrate reputation analysis into broader security workflows. In doing so, it 
contributes to a growing movement toward open, explainable, and customizable 
cybersecurity tooling.  

 

 

 

 

  



3. System Architecture 
 

3.0 Prerequisites 

Before deploying or experimenting with the sender reputation analysis framework, users 
should ensure the following prerequisites are met. These requirements span software 
dependencies, API access, and basic system configuration. 

3.0.1 Programming Environment 

• Python 3.8+ is required for compatibility with libraries used in DNS resolution, email 
parsing, and API integration. 

• A modern code editor (e.g., VS Code, PyCharm) is recommended for development 
and debugging. 

3.0.2 Required Python Libraries 

The following packages must be installed via pip: 

pip install dnspython 

pip install requests 

pip install python-whois 

pip install pyspf 

 

Optional but recommended: 

pip install email-validator 

pip install rich  # For enhanced terminal output 

 

3.0.3 API Access 

• AbuseIPDB API Key: Required to query IP reputation scores. Users must register at 
abuseipdb.com and obtain a free or paid API key. 

• Additional APIs (e.g., VirusTotal, IPQualityScore) can be integrated with minimal 
changes to the modular design. 

3.0.4 Network and DNS Access 

• The system must have outbound internet access to perform DNS queries and API 
calls. 

• DNS resolution is performed using dnspython, which queries public DNS servers. 



3.0.5 Input Format 

• The framework expects email files in .eml format, which preserve full headers and 
MIME structure. 

• Emails can be sourced from local archives, mail clients, or exported from inboxes 
using IMAP or Gmail API. 

 

3.0.6 Secure API Key Management 

Within the code examples, placeholders such as: 

headers = {"Key": "YOUR_API_KEY", "Accept": "application/json"} 

are intentionally provided. 
 
Best practices for handling API keys include: 
Use environment variables (via os.environ) instead of hardcoding keys into scripts. 

Avoid committing keys to version control by adding them to .gitignore and using secret 
management tools (e.g., Vault, AWS Secrets Manager). 

Implement key rotation policies and restrict scope/permissions of API keys where possible. 

 

Example: 

import os 

API_KEY = os.getenv("ABUSEIPDB_API_KEY")  # Load securely from environment 

headers = {"Key": API_KEY, "Accept": "application/json"} 

This approach ensures that sensitive credentials remain secure, portable, and compliant 
with security best practices. 

  



3.0.7 Exception Handling for Network Calls 

Network operations (DNS lookups, API requests, WHOIS queries) are prone to timeouts, 
rate limits, or transient failures. To ensure reliability, the framework should use structured 
exception handling with retry and fallback mechanisms. 

 

Example for AbuseIPDB requests: 

def query_abuseipdb(ip, api_key): 

    url = f"https://api.abuseipdb.com/api/v2/check?ipAddress={ip}" 

    headers = {"Key": api_key, "Accept": "application/json"} 

    try: 

        response = requests.get(url, headers=headers, timeout=5) 

        response.raise_for_status() 

        return response.json() 

    except requests.exceptions.Timeout: 

        print(f"Timeout querying AbuseIPDB for {ip}") 

        return None 

    except requests.exceptions.RequestException as e: 

        print(f"API error for {ip}: {e}") 

        return None 

This ensures the system fails gracefully under adverse conditions instead of halting 
analysis entirely. 

 

  



 

3.1 Email Parsing 

Using Python’s email module, the system parses raw .eml files to extract: 

• From: header (sender identity) 

• Received: headers (routing path) 

msg = BytesParser(policy=policy.default).parsebytes(raw_email) 

sender = msg['From'] 

received_headers = msg.get_all('Received', []) 

  

3.2 SPF Validation 
SPF records are retrieved via DNS TXT queries. Presence of v=spf1 indicates basic domain 
hygiene. 
answers = dns.resolver.resolve(domain, 'TXT') 

if 'v=spf1' in rdata.to_text(): 

    return True 

 

“The current implementation only verifies presence of an SPF record, not alignment of 
sending IPs. Full SPF validation with pyspf can be added in future work. 

 

3.3 MX Record Check 

MX records confirm that the domain is configured to send/receive email. 

answers = dns.resolver.resolve(domain, 'MX') 

return len(answers) > 0 

  

3.4 IP Extraction 

Sender IP is extracted from Received: headers using regex: 

ip_pattern = r'\[(\d{1,3}(?:\.\d{1,3}){3})\]' 

match = re.search(ip_pattern, h) 

  

3.5 AbuseIPDB Reputation Query 

The sender IP is queried against AbuseIPDB to retrieve an abuse confidence score (0–100). 



response = requests.get( 

    f"https://api.abuseipdb.com/api/v2/check?ipAddress={ip}", 

    headers={"Key": "YOUR_API_KEY", "Accept": "application/json"}) 

  

3.6 WHOIS and Domain Age 

Domain age is calculated from WHOIS creation date: 

w = whois.whois(domain) 

age_days = (datetime.now() - w.creation_date).days 

  

3.7 Behavioral Heuristics 

To detect deceptive senders that pass technical checks, the system applies heuristic 
filters: 

Suspicious sender names: Hash-like identifiers, system alerts, or invoice-style labels 

Risky domain patterns: Uncommon TLDs (e.g., .ru, .cn) or excessively long domain names 

def is_suspicious_name(sender): 

    return bool(re.search(r"(access log|#[A-Z0-9]{6,}|system 

alert|invoice|payment)", sender, re.IGNORECASE)) 

 

def is_suspicious_domain(domain): 

    return domain.endswith('.ru') or domain.endswith('.cn') or len(domain) > 

30 

 

3.8 Extensibility 

The framework is designed to be modular and easily extensible, enabling new features with 
minimal effort. Enhancements include: 

• Real-time analysis: Integration with Gmail API or mail server logs for continuous 
monitoring. 

• Custom output formats: Export results in CSV, JSON, or SIEM-compatible formats. 

• Additional threat intelligence APIs: VirusTotal, IPQualityScore, Cisco Talos, or 
others. 

• Visualization: Enhanced terminal output with rich, or dashboards for trust score 
reporting.  



4. Threat Model  

To contextualize its applicability, the framework operates under a defined threat model that 
clarifies which attack types it can reasonably detect, and which remain outside its scope. 

 

Covered Threats 

• Domain spoofing: Detection of missing or misconfigured SPF and MX records 
exposes forged domains. 

• Impersonation attempts: Suspicious display names, hash-like identifiers, and 
“system alert” labels are penalized. 

• Use of newly registered domains: WHOIS lookups highlight domains with short 
lifespans, which are frequently leveraged in phishing. 

• Risky TLDs and anomalous domain structures: Domains with uncommon 
extensions (e.g., .ru, .cn) or excessive length are flagged. 

• IPs with poor reputation: Integration with AbuseIPDB surfaces addresses associated 
with abuse reports. 

 

Out-of-Scope Threats 

• Compromised legitimate accounts: Attacks launched from valid, long-established 
domains with strong reputation will likely evade detection. 

• Content-level phishing: The framework does not analyze the body of the email, 
attachments, or embedded URLs. 

• Social engineering and spear phishing: Targeted attacks using personalized sender 
identities or real compromised infrastructure fall outside its rule-based trust 
scoring. 

• Encrypted or obfuscated metadata: Advanced adversaries may attempt to bypass 
header analysis using custom relays or privacy protections. 
 

 



5. Trust Scoring Model 
The sender trust score begins at 100 and applies deductions based on both technical and 
behavioral indicators. This hybrid approach improves detection accuracy by penalizing not 
only misconfigurations and threat intelligence signals, but also suspicious naming patterns 
and domain characteristics. 

Factor Condition Penalty 

SPF Missing or invalid −30 

AbuseIPDB abuse confidence score  Score >50 −50 

AbuseIPDB abuse confidence score Score >20 −20 

Domain Age <30 days −25 

Domain Age 30–180 days −10 

MX Record Missing −25 

Sender Name 
Contains hashes, alerts, or system 
tags 

−20 

Domain Pattern Suspicious TLD (.ru, .cn) or long name −15 

 

The final score is capped between 0 and 100. Risk levels are classified as: 

• Low Risk: Score >80 

• Medium Risk: Score 51–80 

• High Risk: Score ≤50 

This model balances strict technical validation with contextual awareness, reducing false 
positives while flagging deceptive senders that might otherwise appear legitimate. 

  



6. Results and Interpretation 
 

The following senders were analyzed using the framework: 

 

Exhibit A: Suspicious Sender – sneezekey.ru 
 

        Email Sender Analysis Report 

Sender: "Access Log: #NYKDNJNWW" <rqgoq@sneezekey.ru> 

Sender Domain: sneezekey.ru 

Sender IP: 57.129.5.0 

SPF Valid: True 

AbuseIPDB abuse confidence score: 0 

Domain Age: 108 days 

MX Record Present: True 

Trust Score: 55 

Risk Level: Medium 

 

This email superficially complies with technical standards—SPF validation passed, MX 
records are present, and the IP address has no known abuse reports. The domain is 108 
days old, which avoids the “newly registered” penalty but still falls within the range of 
caution. 

Despite these clean signals, the trust score is reduced to 55, placing the sender in the 
Medium Risk category. This is due to behavioral heuristics: the display name includes a 
hash-like identifier (#NYKDNJNWW) and a system-style label (Access Log), both of which 
are common in phishing and alert-style scams. Additionally, the .ru top-level domain is 
flagged as suspicious due to its frequent association with spam and fraud campaigns. 

This result demonstrates the value of combining protocol-level validation with contextual 
analysis. A sender that passes SPF and MX checks may still pose a risk if its naming 
conventions, domain patterns, or metadata resemble known phishing tactics. The 
framework’s hybrid scoring model successfully identifies this discrepancy, preventing a 
false sense of security based on technical compliance alone. 

 

 

 

 



 

 Exhibit B: Trusted Sender – comptia.org 
 
        Email Sender Analysis Report 

Sender: CompTIA <noreplies@comptia.org> 

Sender Domain: comptia.org 

Sender IP: 54.240.94.156 

SPF Valid: True 

AbuseIPDB abuse confidence score: 0 

Domain Age: 10995 days 

MX Record Present: True 

Trust Score: 100 

Risk Level: Low 

 

This email originates from noreplies@comptia.org, a sender associated with the well-
established technology certification organization CompTIA. The domain comptia.org 
passes SPF validation and has active MX records, confirming proper mail server 
configuration. The sender IP 54.240.94.156 returns an AbuseIPDB abuse confidence score 
of 0, indicating no known abuse reports. The domain age is 10,995 days—approximately 30 
years—signaling long-term legitimacy and stability. 

No behavioral red flags were detected. The display name is clean and professional, the 
domain uses a trusted .org top-level domain, and there are no suspicious lexical patterns 
or anomalies in the sender metadata. As a result, the trust score remains at 100, placing 
the sender in the Low Risk category. 

This outcome demonstrates the framework’s ability to recognize and reward legitimate 
senders that meet both technical and behavioral criteria. It also validates the scoring 
model’s balance—ensuring that trusted organizations are not penalized unnecessarily 
while maintaining vigilance against deceptive signals. The CompTIA result serves as a 
benchmark for what a fully compliant and trustworthy sender should look like within the 
system. 

 

  



7. Use Cases 
 

• Security Operations: Triage suspicious emails with transparent scoring 

• Education: Teach email authentication and reputation analysis 

• Forensics: Investigate sender legitimacy in incident response 

• Automation: Integrate into pipelines for batch analysis 

 

7.1 Security Operations 

In modern security operations centers (SOCs), analysts are inundated with alerts, logs, and 
email-based threats. This framework provides a transparent and modular tool for triaging 
suspicious emails based on sender reputation. Unlike black-box filters, it offers a clear 
breakdown of trust factors—SPF validation, IP reputation, domain age, and MX 
configuration—allowing analysts to make informed decisions quickly. 

By integrating this tool into SOC workflows, teams can: 

• Prioritize investigation of high-risk senders 

• Flag spoofed or misconfigured domains 

• Enrich email metadata with reputation scores 

• Reduce false positives by contextualizing sender behavior 

Its interpretability makes it especially valuable in environments where accountability and 
auditability are critical. 

 

7.2 Education and Training 

Email infrastructure and authentication protocols are notoriously opaque to newcomers. 
This framework demystifies the process by exposing how headers, DNS records, and 
reputation databases interact to determine sender legitimacy. 

Educators and trainers can use it to: 

• Demonstrate real-world SPF, MX, and WHOIS queries 

• Teach students how to parse and interpret email headers 



• Explore threat intelligence APIs in a hands-on way 

• Build exercises around scoring and risk classification 

By turning abstract concepts into tangible code and output, the framework fosters deeper 
understanding of email security fundamentals. 

 

7.3 Digital Forensics and Incident Response 

During a security incident, determining whether an email is legitimate or malicious is often 
a time-sensitive task. This framework supports forensic analysis by extracting and 
validating sender metadata in a structured, repeatable way. 

Incident responders can use it to: 

• Trace the origin of suspicious messages 

• Validate whether the sender domain is properly configured 

• Cross-reference IP addresses with abuse databases 

• Document findings with clear scoring and rationale 

Its modular design allows responders to adapt it to different environments, whether 
analyzing archived .eml files or live inbox traffic. 

 

7.4 Automation and Integration 

The framework is built for extensibility and automation. It can be integrated into larger 
pipelines for batch processing, continuous monitoring, or enrichment of email logs. 

Automation use cases include: 

• Processing large volumes of .eml files from archives or exports 

• Enriching SIEM or SOAR platforms with sender reputation scores 

• Triggering alerts or actions based on trust thresholds 

• Scheduling periodic scans of inboxes via Gmail API 

Its Python foundation and API-driven architecture make it easy to plug into existing 
systems, whether for daily triage or long-term threat intelligence correlation. 

 



 8. Limitations and Future Work 
 

While this framework provides a transparent and modular approach to sender reputation 
analysis, several limitations remain. First, the scoring model may over-rely on technical 
signals such as SPF validity, MX presence, and WHOIS-based domain age, which can be 
spoofed or misconfigured even by legitimate senders. Conversely, phishing emails that 
technically comply with these standards may evade detection if behavioral indicators are 
not incorporated. The current implementation does not yet analyze sender display names, 
domain lexical patterns, or header anomalies that often signal malicious intent. 
Additionally, WHOIS lookups are performed locally and may fail for privacy-protected or 
registrar-blocked domains, resulting in incomplete age data. AbuseIPDB scoring depends 
on external API availability and may not reflect real-time threat intelligence for low-volume 
or newly active IPs. Finally, the trust score is static and rule-based, lacking adaptive 
learning or contextual awareness. Future iterations may integrate machine learning, 
behavioral heuristics, and enriched metadata to improve accuracy and reduce false 
positives. 

 

Limitations 

• SPF validation does not enforce IP match 

• DKIM and DMARC not yet implemented 

• IPv6 not supported 

• Reputation sources limited to AbuseIPDB 

Future Enhancements 

• Add DKIM and DMARC validation 

• Support IPv6 and ASN lookup 

• Integrate VirusTotal, IPQualityScore, Talos 

• Build CLI or web dashboard 

• Enable Gmail API integration for real-time analysis 

 

  



8.1 Ethical and Legal Considerations 

This framework is designed strictly for defensive and educational purposes, not for 
offensive use or reconnaissance. Its goal is to help analysts, researchers, and students 
understand how sender reputation can be evaluated transparently. 
Key ethical and legal points include: 

• Responsible Use: The framework must only be applied to email sources that the 
user is authorized to analyze (e.g., organizational inboxes, exported training 
datasets, or incident response evidence). Unauthorized scanning of third-party 
domains or addresses without consent may violate acceptable use policies or legal 
statutes. 

• Non-Malicious Intent: The scoring logic and heuristics should never be misused for 
reconnaissance or aiding in spam/phishing campaigns. By explicitly framing the tool 
as an educational and defensive mechanism, the framework aligns with ethical 
research standards and supports responsible cybersecurity practices. 

• Transparency & Education: Because the framework is modular and interpretable, it 
can serve as a teaching aid for ethical cybersecurity training programs, where 
students learn how to identify, classify, and defend against malicious senders. 

  



9. Conclusion 
 

This framework offers a transparent, extensible approach to email sender trust evaluation. 
By combining DNS validation, IP reputation, and domain metadata, it empowers users to 
assess risk with clarity and control. Whether used for education, automation, or security 
operations, this tool fills a critical gap between raw email headers and actionable insight. 

 

Unlike proprietary filtering systems that often obscure their scoring logic, this framework 
prioritizes interpretability and modularity. Each component—from SPF enforcement to 
WHOIS-based domain age analysis—can be independently audited, tuned, or replaced. 
This makes the system ideal not only for operational use but also for research, training, and 
experimentation. 

 

The framework’s reliance on open standards and public APIs ensures accessibility for 
small teams, educators, and independent analysts. Its Python-based architecture allows 
rapid integration into existing workflows, whether for batch processing .eml files, enriching 
SIEM logs, or powering real-time inbox monitoring via Gmail API. 

 

Furthermore, the scoring model provides a foundation for future enhancements. As threat 
intelligence evolves, additional signals—such as DKIM, DMARC, ASN reputation, 
geolocation, and behavioral heuristics—can be incorporated without disrupting the core 
logic. This adaptability positions the framework as a living tool that can grow alongside the 
threat landscape. 

 

In an era where email remains both indispensable and vulnerable, empowering users with 
transparent, customizable sender analysis is not just a technical achievement—it’s a 
strategic necessity. This framework bridges the gap between raw infrastructure and 
informed decision-making, offering a practical, ethical, and scalable solution for modern 
email security.  

 

  



10. References 
  

1. AbuseIPDB. (2025). AbuseIPDB API Documentation. Retrieved from 
https://www.abuseipdb.com 

2. ICANN. (2025). WHOIS Protocol Overview. Retrieved from https://whois.icann.org 
3. Levine, J., & Crocker, D. (2014). RFC 7208: Sender Policy Framework (SPF) for 

Authorizing Use of Domains in Email. Internet Engineering Task Force. Retrieved from 
https://tools.ietf.org/html/rfc7208 

4. Mockapetris, P. (1987). RFC 1035: Domain Names—Implementation and Specification. 
Internet Engineering Task Force. Retrieved from https://tools.ietf.org/html/rfc1035 

5. Python Software Foundation. (2025). Python 3 Standard Library Documentation. 
Retrieved from https://docs.python.org/3 

6. I. Fette, N. Sadeh, and A. Tomasic, “Learning to detect phishing emails,” Proceedings of 
the 16th International Conference on World Wide Web (WWW ’07), Banff, AB, Canada, 
pp. 649–656, ACM, 2007. doi: 10.1145/1242572.1242660. 

7. S. Abu-Nimeh, D. Nappa, X. Wang, and S. Nair, “A comparison of machine learning 
techniques for phishing detection,” Proceedings of the Anti-Phishing Working Groups 
2nd Annual eCrime Researchers Summit (eCrime ’07), Pittsburgh, PA, USA, pp. 60–69, 
IEEE, 2007. doi: 10.1109/ECRIME.2007.4408060. 

8. S. Marchal, N. Asankan, J. François, R. State, and T. Engel, “PhishStorm: Detecting 
phishing with streaming analytics,” IEEE Transactions on Network and Service 
Management, vol. 14, no. 1, pp. 58–71, 2017. doi: 10.1109/TNSM.2016.2647203. 

 

https://www.abuseipdb.com/
https://whois.icann.org/
https://tools.ietf.org/html/rfc7208
https://tools.ietf.org/html/rfc1035
https://docs.python.org/3


Appendix A: Full Source Code (With Behavioral detection) 

 

# Import necessary modules for email parsing, DNS queries, HTTP requests, regex, 

WHOIS lookup, and date handling 

import email 

from email import policy 

from email.parser import BytesParser 

import dns.resolver 

import requests 

import re 

import whois 

from datetime import datetime 

 

# Parse the raw email and extract sender and routing headers 

def parse_email(raw_email): 

    # Parse the email using default policy (handles headers and encoding cleanly) 

    msg = BytesParser(policy=policy.default).parsebytes(raw_email) 

    # Extract the 'From' header (sender's email address) 

    sender = msg['From'] 

    # Extract all 'Received' headers (used to trace sender IP) 

    received_headers = msg.get_all('Received', []) 

    return sender, received_headers 

 

# Check if the domain has a valid SPF record 

def check_spf(domain): 

    try: 

        # Query DNS TXT records for the domain 

        answers = dns.resolver.resolve(domain, 'TXT') 

        for rdata in answers: 

            # Look for an SPF record starting with 'v=spf1' 

            if 'v=spf1' in rdata.to_text(): 

                return True 

    except Exception: 

        # If DNS query fails or no SPF found 

        return False 

    return False 

 

# Extract the sender IP address from the Received headers 

def extract_ip(headers): 

    # Regex pattern to match IPv4 addresses in square brackets 

    ip_pattern = r'\[(\d{1,3}(?:\.\d{1,3}){3})\]' 

    for h in headers: 

        match = re.search(ip_pattern, h) 

        if match: 



            return match.group(1) 

    return None 

 

# Use WHOIS to determine domain age in days 

def get_domain_age_local(domain): 

    try: 

        w = whois.whois(domain) 

        creation_date = w.creation_date 

 

        # Handle list of dates 

        if isinstance(creation_date, list): 

            creation_date = next((d for d in creation_date if isinstance(d, 

datetime)), None) 

 

        # Final check 

        if not isinstance(creation_date, datetime): 

            print(f"WHOIS failed for {domain}: no valid creation date") 

            return -1 

 

        age_days = (datetime.now() - creation_date).days 

        return age_days 

    except Exception as e: 

        print(f"Local WHOIS error for {domain}: {e}") 

        return -1 

 

# Check if the domain has MX records (mail server configuration) 

def has_mx_record(domain): 

    try: 

        answers = dns.resolver.resolve(domain, 'MX') 

        return len(answers) > 0 

    except Exception: 

        return False 

 

# Query AbuseIPDB for sender IP reputation 

def abuseipdb_check(ip): 

    try: 

        response = requests.get( 

            f"https://api.abuseipdb.com/api/v2/check?ipAddress={ip}", 

            headers={ 

                "Key": "YOUR_API_KEY",  # Replace with your actual AbuseIPDB API 

key 

                "Accept": "application/json" 

            } 

        ) 

        data = response.json() 



        # Extract abuse confidence score (0–100) 

        return data.get('data', {}).get('abuseConfidenceScore', 0) 

    except Exception: 

        # Return 0 if API call fails 

        return 0 

 

# Calculate a trust score based on multiple factors 

def score_sender(spf_valid, abuse_score, domain_age, mx_valid, sender, domain): 

    score = 100  # Start with full trust 

 

    # Technical signals 

    if not spf_valid: 

        score -= 30 

    if abuse_score > 50: 

        score -= 50 

    elif abuse_score > 20: 

        score -= 20 

    if domain_age != -1: 

        if domain_age < 30: 

            score -= 25 

        elif domain_age < 180: 

            score -= 10 

    if not mx_valid: 

        score -= 25 

 

    # Behavioral signals 

    if is_suspicious_name(sender): 

        score -= 20 

    if is_suspicious_domain(domain): 

        score -= 15 

 

    # Cap score between 0 and 100 

    score = max(0, min(score, 100)) 

    return score 

 

# Load and analyze a local .eml email file 

with open(r'C:\01. Python TEST\test2.eml', 'rb') as f: 

    raw_email = f.read() 

 

# Detect suspicious sender display names 

def is_suspicious_name(sender): 

    return bool(re.search(r"(access log|#[A-Z0-9]{6,}|system 

alert|invoice|payment)", sender, re.IGNORECASE)) 

 

# Detect suspicious domains or TLDs 



def is_suspicious_domain(domain): 

    return domain.endswith('.ru') or domain.endswith('.cn') or len(domain) > 30 

 

# Run analysis pipeline 

sender, headers = parse_email(raw_email) 

domain = sender.split('@')[-1]  # Extract domain from sender email 

domain = re.sub(r"[^\w\.-]", "", domain.strip().lower()) 

domain_age = get_domain_age_local(domain) 

mx_valid = has_mx_record(domain) 

spf_valid = check_spf(domain) 

ip = extract_ip(headers) 

abuse_score = abuseipdb_check(ip) 

trust_score = score_sender(spf_valid, abuse_score, domain_age, mx_valid, sender, 

domain) 

 

# Print full sender reputation report 

print("📧 Email Sender Analysis Report") 

print(f"Sender: {sender}") 

print(f"Sender Domain: {domain}") 

print(f"Sender IP: {ip}") 

print(f"SPF Valid: {spf_valid}") 

print(f"AbuseIPDB abuse confidence score: {abuse_score}") 

print(f"Domain Age: {domain_age} days") 

print(f"MX Record Present: {mx_valid}") 

print(f"Trust Score: {trust_score}") 

print("Risk Level:", "Low" if trust_score > 80 else "Medium" if trust_score > 50 

else "High") 

 


